Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ {x}^{3} - ln(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{3} - ln(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{3} - ln(x)\right)}{dx}\\=&3x^{2} - \frac{1}{(x)}\\=&3x^{2} - \frac{1}{x}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 3x^{2} - \frac{1}{x}\right)}{dx}\\=&3*2x - \frac{-1}{x^{2}}\\=&6x + \frac{1}{x^{2}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 6x + \frac{1}{x^{2}}\right)}{dx}\\=&6 + \frac{-2}{x^{3}}\\=& - \frac{2}{x^{3}} + 6\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( - \frac{2}{x^{3}} + 6\right)}{dx}\\=& - \frac{2*-3}{x^{4}} + 0\\=&\frac{6}{x^{4}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return