There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ \frac{6}{({x}^{4})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{6}{x^{4}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{6}{x^{4}}\right)}{dx}\\=&\frac{6*-4}{x^{5}}\\=&\frac{-24}{x^{5}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-24}{x^{5}}\right)}{dx}\\=&\frac{-24*-5}{x^{6}}\\=&\frac{120}{x^{6}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{120}{x^{6}}\right)}{dx}\\=&\frac{120*-6}{x^{7}}\\=&\frac{-720}{x^{7}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{-720}{x^{7}}\right)}{dx}\\=&\frac{-720*-7}{x^{8}}\\=&\frac{5040}{x^{8}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !