Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {a}^{(2x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {a}^{(2x)}\right)}{dx}\\=&({a}^{(2x)}((2)ln(a) + \frac{(2x)(0)}{(a)}))\\=&2{a}^{(2x)}ln(a)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 2{a}^{(2x)}ln(a)\right)}{dx}\\=&2({a}^{(2x)}((2)ln(a) + \frac{(2x)(0)}{(a)}))ln(a) + \frac{2{a}^{(2x)}*0}{(a)}\\=&4{a}^{(2x)}ln^{2}(a)\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return