There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ e^{x*2 + 2x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = e^{4x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( e^{4x}\right)}{dx}\\=&e^{4x}*4\\=&4e^{4x}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 4e^{4x}\right)}{dx}\\=&4e^{4x}*4\\=&16e^{4x}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 16e^{4x}\right)}{dx}\\=&16e^{4x}*4\\=&64e^{4x}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 64e^{4x}\right)}{dx}\\=&64e^{4x}*4\\=&256e^{4x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !