There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {x}^{cos(x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {x}^{cos(x)}\right)}{dx}\\=&({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))\\=&-{x}^{cos(x)}ln(x)sin(x) + \frac{{x}^{cos(x)}cos(x)}{x}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( -{x}^{cos(x)}ln(x)sin(x) + \frac{{x}^{cos(x)}cos(x)}{x}\right)}{dx}\\=&-({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))ln(x)sin(x) - \frac{{x}^{cos(x)}sin(x)}{(x)} - {x}^{cos(x)}ln(x)cos(x) + \frac{-{x}^{cos(x)}cos(x)}{x^{2}} + \frac{({x}^{cos(x)}((-sin(x))ln(x) + \frac{(cos(x))(1)}{(x)}))cos(x)}{x} + \frac{{x}^{cos(x)}*-sin(x)}{x}\\=&{x}^{cos(x)}ln^{2}(x)sin^{2}(x) - \frac{2{x}^{cos(x)}ln(x)sin(x)cos(x)}{x} - \frac{2{x}^{cos(x)}sin(x)}{x} - {x}^{cos(x)}ln(x)cos(x) - \frac{{x}^{cos(x)}cos(x)}{x^{2}} + \frac{{x}^{cos(x)}cos^{2}(x)}{x^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !