There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (2x - 11){\frac{1}{2}}^{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2x{\frac{1}{2}}^{x} - 11 * {\frac{1}{2}}^{x}\right)}{dx}\\=&2 * {\frac{1}{2}}^{x} + 2x({\frac{1}{2}}^{x}((1)ln(\frac{1}{2}) + \frac{(x)(0)}{(\frac{1}{2})})) - 11({\frac{1}{2}}^{x}((1)ln(\frac{1}{2}) + \frac{(x)(0)}{(\frac{1}{2})}))\\=& - 11 * {\frac{1}{2}}^{x}ln(\frac{1}{2}) + 2x{\frac{1}{2}}^{x}ln(\frac{1}{2}) + 2 * {\frac{1}{2}}^{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !