Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{(x + \frac{3}{x})}{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{2}x + \frac{\frac{3}{2}}{x}\right)}{dx}\\=&\frac{1}{2} + \frac{\frac{3}{2}*-1}{x^{2}}\\=& - \frac{3}{2x^{2}} + \frac{1}{2}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( - \frac{3}{2x^{2}} + \frac{1}{2}\right)}{dx}\\=& - \frac{3*-2}{2x^{3}} + 0\\=&\frac{3}{x^{3}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return