There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (3 + 2{x}^{\frac{3}{2}}){(1 - x)}^{\frac{8}{5}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 2(-x + 1)^{\frac{8}{5}}x^{\frac{3}{2}} + 3(-x + 1)^{\frac{8}{5}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2(-x + 1)^{\frac{8}{5}}x^{\frac{3}{2}} + 3(-x + 1)^{\frac{8}{5}}\right)}{dx}\\=&2(\frac{8}{5}(-x + 1)^{\frac{3}{5}}(-1 + 0))x^{\frac{3}{2}} + 2(-x + 1)^{\frac{8}{5}}*\frac{3}{2}x^{\frac{1}{2}} + 3(\frac{8}{5}(-x + 1)^{\frac{3}{5}}(-1 + 0))\\=& - \frac{16(-x + 1)^{\frac{3}{5}}x^{\frac{3}{2}}}{5} + 3(-x + 1)^{\frac{8}{5}}x^{\frac{1}{2}} - \frac{24(-x + 1)^{\frac{3}{5}}}{5}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !