There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ ({(x - 2)}^{(\frac{5}{3})}) - (\frac{5}{9}){x}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (x - 2)^{\frac{5}{3}} - \frac{5}{9}x^{2}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (x - 2)^{\frac{5}{3}} - \frac{5}{9}x^{2}\right)}{dx}\\=&(\frac{5}{3}(x - 2)^{\frac{2}{3}}(1 + 0)) - \frac{5}{9}*2x\\=&\frac{5(x - 2)^{\frac{2}{3}}}{3} - \frac{10x}{9}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{5(x - 2)^{\frac{2}{3}}}{3} - \frac{10x}{9}\right)}{dx}\\=&\frac{5(\frac{\frac{2}{3}(1 + 0)}{(x - 2)^{\frac{1}{3}}})}{3} - \frac{10}{9}\\=&\frac{10}{9(x - 2)^{\frac{1}{3}}} - \frac{10}{9}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !