Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {x}^{\frac{1}{3}}{(sin(x))}^{(\frac{2}{3})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{\frac{1}{3}}sin^{\frac{2}{3}}(x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{\frac{1}{3}}sin^{\frac{2}{3}}(x)\right)}{dx}\\=&\frac{\frac{1}{3}sin^{\frac{2}{3}}(x)}{x^{\frac{2}{3}}} + \frac{x^{\frac{1}{3}}*\frac{2}{3}cos(x)}{sin^{\frac{1}{3}}(x)}\\=&\frac{2x^{\frac{1}{3}}cos(x)}{3sin^{\frac{1}{3}}(x)} + \frac{sin^{\frac{2}{3}}(x)}{3x^{\frac{2}{3}}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return