There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 1 - \frac{x}{(sqrt({r}^{2} - {(x - 1)}^{2}))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{x}{sqrt(r^{2} - x^{2} + 2x - 1)} + 1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{x}{sqrt(r^{2} - x^{2} + 2x - 1)} + 1\right)}{dx}\\=& - \frac{1}{sqrt(r^{2} - x^{2} + 2x - 1)} - \frac{x*-(0 - 2x + 2 + 0)*\frac{1}{2}}{(r^{2} - x^{2} + 2x - 1)(r^{2} - x^{2} + 2x - 1)^{\frac{1}{2}}} + 0\\=& - \frac{1}{sqrt(r^{2} - x^{2} + 2x - 1)} - \frac{x^{2}}{(r^{2} - x^{2} + 2x - 1)^{\frac{3}{2}}} + \frac{x}{(r^{2} - x^{2} + 2x - 1)^{\frac{3}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !