Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ arctan({x}^{3})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = arctan(x^{3})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( arctan(x^{3})\right)}{dx}\\=&(\frac{(3x^{2})}{(1 + (x^{3})^{2})})\\=&\frac{3x^{2}}{(x^{6} + 1)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{3x^{2}}{(x^{6} + 1)}\right)}{dx}\\=&3(\frac{-(6x^{5} + 0)}{(x^{6} + 1)^{2}})x^{2} + \frac{3*2x}{(x^{6} + 1)}\\=&\frac{-18x^{7}}{(x^{6} + 1)^{2}} + \frac{6x}{(x^{6} + 1)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return