There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {e}^{sin(x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e}^{sin(x)}\right)}{dx}\\=&({e}^{sin(x)}((cos(x))ln(e) + \frac{(sin(x))(0)}{(e)}))\\=&{e}^{sin(x)}cos(x)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( {e}^{sin(x)}cos(x)\right)}{dx}\\=&({e}^{sin(x)}((cos(x))ln(e) + \frac{(sin(x))(0)}{(e)}))cos(x) + {e}^{sin(x)}*-sin(x)\\=&{e}^{sin(x)}cos^{2}(x) - {e}^{sin(x)}sin(x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !