There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {x}^{2} + 2x - log_{2}^{x} + \frac{sin(π)}{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{sin(π)}{x} + 2x - log_{2}^{x} + x^{2}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{sin(π)}{x} + 2x - log_{2}^{x} + x^{2}\right)}{dx}\\=&\frac{-sin(π)}{x^{2}} + \frac{cos(π)*0}{x} + 2 - (\frac{(\frac{(1)}{(x)} - \frac{(0)log_{2}^{x}}{(2)})}{(ln(2))}) + 2x\\=& - \frac{sin(π)}{x^{2}} - \frac{1}{xln(2)} + 2x + 2\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !