There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {x}^{2} + 2x - log_{2}^{x} + sin(\frac{π}{16})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{2} + 2x - log_{2}^{x} + sin(\frac{1}{16}π)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{2} + 2x - log_{2}^{x} + sin(\frac{1}{16}π)\right)}{dx}\\=&2x + 2 - (\frac{(\frac{(1)}{(x)} - \frac{(0)log_{2}^{x}}{(2)})}{(ln(2))}) + cos(\frac{1}{16}π)*0\\=& - \frac{1}{xln(2)} + 2x + 2\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !