There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {3}^{x} - \frac{3}{x} + 3ln(x) - {e}^{3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {3}^{x} - \frac{3}{x} + 3ln(x) - e^{3}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {3}^{x} - \frac{3}{x} + 3ln(x) - e^{3}\right)}{dx}\\=&({3}^{x}((1)ln(3) + \frac{(x)(0)}{(3)})) - \frac{3*-1}{x^{2}} + \frac{3}{(x)} - 3e^{2}*0\\=&{3}^{x}ln(3) + \frac{3}{x^{2}} + \frac{3}{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !