There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {(3x - 5)}^{4}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 81x^{4} - 540x^{3} + 1350x^{2} - 1500x + 625\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 81x^{4} - 540x^{3} + 1350x^{2} - 1500x + 625\right)}{dx}\\=&81*4x^{3} - 540*3x^{2} + 1350*2x - 1500 + 0\\=&324x^{3} - 1620x^{2} + 2700x - 1500\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 324x^{3} - 1620x^{2} + 2700x - 1500\right)}{dx}\\=&324*3x^{2} - 1620*2x + 2700 + 0\\=&972x^{2} - 3240x + 2700\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !