There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (x - 6){(x - 1)}^{(\frac{2}{3})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x(x - 1)^{\frac{2}{3}} - 6(x - 1)^{\frac{2}{3}}\right)}{dx}\\=&(x - 1)^{\frac{2}{3}} + x((x - 1)^{\frac{2}{3}}((0)ln(x - 1) + \frac{(\frac{2}{3})(1 + 0)}{(x - 1)})) - 6((x - 1)^{\frac{2}{3}}((0)ln(x - 1) + \frac{(\frac{2}{3})(1 + 0)}{(x - 1)}))\\=&\frac{2(x - 1)^{\frac{2}{3}}x}{3(x - 1)} - \frac{4(x - 1)^{\frac{2}{3}}}{(x - 1)} + (x - 1)^{\frac{2}{3}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !