Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln(610.78e^{\frac{17.269(x - 273.16)}{(x - 35.86)}})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(610.78e^{\frac{17.269x}{(x - 35.86)} - \frac{4717.20004}{(x - 35.86)}})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(610.78e^{\frac{17.269x}{(x - 35.86)} - \frac{4717.20004}{(x - 35.86)}})\right)}{dx}\\=&\frac{610.78e^{\frac{17.269x}{(x - 35.86)} - \frac{4717.20004}{(x - 35.86)}}(17.269(\frac{-(1 + 0)}{(x - 35.86)^{2}})x + \frac{17.269}{(x - 35.86)} - 4717.20004(\frac{-(1 + 0)}{(x - 35.86)^{2}}))}{(610.78e^{\frac{17.269x}{(x - 35.86)} - \frac{4717.20004}{(x - 35.86)}})}\\=&\frac{-17.269xe^{\frac{17.269x}{(x - 35.86)} - \frac{4717.20004}{(x - 35.86)}}}{(x - 35.86)(x - 35.86)e^{\frac{17.269x}{(x - 35.86)} - \frac{4717.20004}{(x - 35.86)}}} + \frac{17.269e^{\frac{17.269x}{(x - 35.86)} - \frac{4717.20004}{(x - 35.86)}}}{(x - 35.86)e^{\frac{17.269x}{(x - 35.86)} - \frac{4717.20004}{(x - 35.86)}}} + \frac{4717.20004e^{\frac{17.269x}{(x - 35.86)} - \frac{4717.20004}{(x - 35.86)}}}{(x - 35.86)(x - 35.86)e^{\frac{17.269x}{(x - 35.86)} - \frac{4717.20004}{(x - 35.86)}}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return