There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{17.269(x - 273.16)}{(x - 35.86)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{17.269x}{(x - 35.86)} - \frac{4717.20004}{(x - 35.86)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{17.269x}{(x - 35.86)} - \frac{4717.20004}{(x - 35.86)}\right)}{dx}\\=&17.269(\frac{-(1 + 0)}{(x - 35.86)^{2}})x + \frac{17.269}{(x - 35.86)} - 4717.20004(\frac{-(1 + 0)}{(x - 35.86)^{2}})\\=&\frac{-17.269x}{(x - 35.86)(x - 35.86)} + \frac{4717.20004}{(x - 35.86)(x - 35.86)} + \frac{17.269}{(x - 35.86)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !