There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ax - b{x}^{e^{4 - Inx}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ax - b{x}^{e^{-Inx + 4}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ax - b{x}^{e^{-Inx + 4}}\right)}{dx}\\=&a - b({x}^{e^{-Inx + 4}}((e^{-Inx + 4}(-In + 0))ln(x) + \frac{(e^{-Inx + 4})(1)}{(x)}))\\=&a + bIn{x}^{e^{-Inx + 4}}e^{-Inx + 4}ln(x) - \frac{b{x}^{e^{-Inx + 4}}e^{-Inx + 4}}{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !