Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {sin(cos(x))}^{x} + sinh(x) - (x + e^{3}x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {sin(cos(x))}^{x} + sinh(x) - xe^{3} - x\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {sin(cos(x))}^{x} + sinh(x) - xe^{3} - x\right)}{dx}\\=&({sin(cos(x))}^{x}((1)ln(sin(cos(x))) + \frac{(x)(cos(cos(x))*-sin(x))}{(sin(cos(x)))})) + cosh(x) - e^{3} - xe^{3}*0 - 1\\=&{sin(cos(x))}^{x}ln(sin(cos(x))) - \frac{x{sin(cos(x))}^{x}sin(x)cos(cos(x))}{sin(cos(x))} + cosh(x) - e^{3} - 1\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return