Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ a{{x}^{sinh(x)}}^{e^{x + {1}^{(\frac{sqrt(9)}{x})}}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = a{{x}^{sinh(x)}}^{e^{x + {1}^{(\frac{sqrt(9)}{x})}}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( a{{x}^{sinh(x)}}^{e^{x + {1}^{(\frac{sqrt(9)}{x})}}}\right)}{dx}\\=&a({{x}^{sinh(x)}}^{e^{x + {1}^{(\frac{sqrt(9)}{x})}}}((e^{x + {1}^{(\frac{sqrt(9)}{x})}}(1 + ({1}^{(\frac{sqrt(9)}{x})}((\frac{-sqrt(9)}{x^{2}} + \frac{0*\frac{1}{2}*9^{\frac{1}{2}}}{x})ln(1) + \frac{(\frac{sqrt(9)}{x})(0)}{(1)}))))ln({x}^{sinh(x)}) + \frac{(e^{x + {1}^{(\frac{sqrt(9)}{x})}})(({x}^{sinh(x)}((cosh(x))ln(x) + \frac{(sinh(x))(1)}{(x)})))}{({x}^{sinh(x)})}))\\=&\frac{-a{1}^{(\frac{sqrt(9)}{x})}{{x}^{sinh(x)}}^{e^{x + {1}^{(\frac{sqrt(9)}{x})}}}e^{x + {1}^{(\frac{sqrt(9)}{x})}}ln(1)ln({x}^{sinh(x)})sqrt(9)}{x^{2}} + a{{x}^{sinh(x)}}^{e^{x + {1}^{(\frac{sqrt(9)}{x})}}}e^{x + {1}^{(\frac{sqrt(9)}{x})}}ln(x)cosh(x) + a{{x}^{sinh(x)}}^{e^{x + {1}^{(\frac{sqrt(9)}{x})}}}e^{x + {1}^{(\frac{sqrt(9)}{x})}}ln({x}^{sinh(x)}) + \frac{a{{x}^{sinh(x)}}^{e^{x + {1}^{(\frac{sqrt(9)}{x})}}}e^{x + {1}^{(\frac{sqrt(9)}{x})}}sinh(x)}{x}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return