There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ lg(sqrt(1 + {x}^{2}) + x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = lg(sqrt(x^{2} + 1) + x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( lg(sqrt(x^{2} + 1) + x)\right)}{dx}\\=&\frac{(\frac{(2x + 0)*\frac{1}{2}}{(x^{2} + 1)^{\frac{1}{2}}} + 1)}{ln{10}(sqrt(x^{2} + 1) + x)}\\=&\frac{x}{(sqrt(x^{2} + 1) + x)(x^{2} + 1)^{\frac{1}{2}}ln{10}} + \frac{1}{(sqrt(x^{2} + 1) + x)ln{10}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !