There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (x{e}^{x}){\frac{1}{(1 + x)}}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x{e}^{x}}{(x + 1)^{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x{e}^{x}}{(x + 1)^{2}}\right)}{dx}\\=&(\frac{-2(1 + 0)}{(x + 1)^{3}})x{e}^{x} + \frac{{e}^{x}}{(x + 1)^{2}} + \frac{x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))}{(x + 1)^{2}}\\=&\frac{-2x{e}^{x}}{(x + 1)^{3}} + \frac{{e}^{x}}{(x + 1)^{2}} + \frac{x{e}^{x}}{(x + 1)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !