There are 1 questions in this calculation: for each question, the 1 derivative of X is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(XB)}{(A + CX)} + (XD)\ with\ respect\ to\ X:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{BX}{(A + CX)} + DX\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{BX}{(A + CX)} + DX\right)}{dX}\\=&(\frac{-(0 + C)}{(A + CX)^{2}})BX + \frac{B}{(A + CX)} + D\\=&\frac{-BCX}{(A + CX)^{2}} + \frac{B}{(A + CX)} + D\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !