There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{({x}^{2} - 1)}{({x}^{\frac{7}{10}} + 4)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{x^{2}}{(x^{\frac{7}{10}} + 4)} - \frac{1}{(x^{\frac{7}{10}} + 4)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{x^{2}}{(x^{\frac{7}{10}} + 4)} - \frac{1}{(x^{\frac{7}{10}} + 4)}\right)}{dx}\\=&(\frac{-(\frac{\frac{7}{10}}{x^{\frac{3}{10}}} + 0)}{(x^{\frac{7}{10}} + 4)^{2}})x^{2} + \frac{2x}{(x^{\frac{7}{10}} + 4)} - (\frac{-(\frac{\frac{7}{10}}{x^{\frac{3}{10}}} + 0)}{(x^{\frac{7}{10}} + 4)^{2}})\\=&\frac{-7x^{\frac{17}{10}}}{10(x^{\frac{7}{10}} + 4)^{2}} + \frac{2x}{(x^{\frac{7}{10}} + 4)} + \frac{7}{10(x^{\frac{7}{10}} + 4)^{2}x^{\frac{3}{10}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !