There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{{x}^{(y + 1)}}{(y + 1)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{{x}^{(y + 1)}}{(y + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{{x}^{(y + 1)}}{(y + 1)}\right)}{dx}\\=&(\frac{-(0 + 0)}{(y + 1)^{2}}){x}^{(y + 1)} + \frac{({x}^{(y + 1)}((0 + 0)ln(x) + \frac{(y + 1)(1)}{(x)}))}{(y + 1)}\\=&\frac{y{x}^{(y + 1)}}{(y + 1)x} + \frac{{x}^{(y + 1)}}{(y + 1)x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !