There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ exln(x) - e{x}^{2} - e^{x} + 2ex\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = xeln(x) - x^{2}e - e^{x} + 2xe\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xeln(x) - x^{2}e - e^{x} + 2xe\right)}{dx}\\=&eln(x) + x*0ln(x) + \frac{xe}{(x)} - 2xe - x^{2}*0 - e^{x} + 2e + 2x*0\\=&eln(x) + 3e - 2xe - e^{x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !