Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 2{x}^{3} + 6x + 3ln(\frac{(x - 1)}{(x + 1)})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 2x^{3} + 6x + 3ln(\frac{x}{(x + 1)} - \frac{1}{(x + 1)})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 2x^{3} + 6x + 3ln(\frac{x}{(x + 1)} - \frac{1}{(x + 1)})\right)}{dx}\\=&2*3x^{2} + 6 + \frac{3((\frac{-(1 + 0)}{(x + 1)^{2}})x + \frac{1}{(x + 1)} - (\frac{-(1 + 0)}{(x + 1)^{2}}))}{(\frac{x}{(x + 1)} - \frac{1}{(x + 1)})}\\=&6x^{2} - \frac{3x}{(x + 1)^{2}(\frac{x}{(x + 1)} - \frac{1}{(x + 1)})} + \frac{3}{(x + 1)^{2}(\frac{x}{(x + 1)} - \frac{1}{(x + 1)})} + \frac{3}{(\frac{x}{(x + 1)} - \frac{1}{(x + 1)})(x + 1)} + 6\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return