Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{e^{x - 1}}{((1 - a)e^{ax})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{e^{x - 1}}{(e^{ax} - ae^{ax})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{e^{x - 1}}{(e^{ax} - ae^{ax})}\right)}{dx}\\=&(\frac{-(e^{ax}a - ae^{ax}a)}{(e^{ax} - ae^{ax})^{2}})e^{x - 1} + \frac{e^{x - 1}(1 + 0)}{(e^{ax} - ae^{ax})}\\=&\frac{-ae^{ax}e^{x - 1}}{(e^{ax} - ae^{ax})^{2}} + \frac{a^{2}e^{ax}e^{x - 1}}{(e^{ax} - ae^{ax})^{2}} + \frac{e^{x - 1}}{(e^{ax} - ae^{ax})}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return