There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (x - 2)arcsin(\frac{(x - 2)}{2}) + sqrt(4x - {x}^{2})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = xarcsin(\frac{1}{2}x - 1) - 2arcsin(\frac{1}{2}x - 1) + sqrt(4x - x^{2})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( xarcsin(\frac{1}{2}x - 1) - 2arcsin(\frac{1}{2}x - 1) + sqrt(4x - x^{2})\right)}{dx}\\=&arcsin(\frac{1}{2}x - 1) + x(\frac{(\frac{1}{2} + 0)}{((1 - (\frac{1}{2}x - 1)^{2})^{\frac{1}{2}})}) - 2(\frac{(\frac{1}{2} + 0)}{((1 - (\frac{1}{2}x - 1)^{2})^{\frac{1}{2}})}) + \frac{(4 - 2x)*\frac{1}{2}}{(4x - x^{2})^{\frac{1}{2}}}\\=&arcsin(\frac{1}{2}x - 1) + \frac{x}{2(\frac{-1}{4}x^{2} + x)^{\frac{1}{2}}} - \frac{x}{(4x - x^{2})^{\frac{1}{2}}} + \frac{2}{(4x - x^{2})^{\frac{1}{2}}} - \frac{1}{(\frac{-1}{4}x^{2} + x)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !