Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {2}^{(x(x - a))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {2}^{(x^{2} - ax)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {2}^{(x^{2} - ax)}\right)}{dx}\\=&({2}^{(x^{2} - ax)}((2x - a)ln(2) + \frac{(x^{2} - ax)(0)}{(2)}))\\=&2x{2}^{(x^{2} - ax)}ln(2) - a{2}^{(x^{2} - ax)}ln(2)\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return