There are 1 questions in this calculation: for each question, the 1 derivative of s is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(m{u}^{2}r)(s({R}^{2} + {r}^{2} + {X}^{2} + 2Xx + {x}^{2}) + 2Rr)}{o}\ with\ respect\ to\ s:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{mu^{2}rR^{2}s}{o} + \frac{mu^{2}r^{3}s}{o} + \frac{mu^{2}rX^{2}s}{o} + \frac{2mu^{2}rXxs}{o} + \frac{mu^{2}rx^{2}s}{o} + \frac{2mu^{2}r^{2}R}{o}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{mu^{2}rR^{2}s}{o} + \frac{mu^{2}r^{3}s}{o} + \frac{mu^{2}rX^{2}s}{o} + \frac{2mu^{2}rXxs}{o} + \frac{mu^{2}rx^{2}s}{o} + \frac{2mu^{2}r^{2}R}{o}\right)}{ds}\\=&\frac{mu^{2}rR^{2}}{o} + \frac{mu^{2}r^{3}}{o} + \frac{mu^{2}rX^{2}}{o} + \frac{2mu^{2}rXx}{o} + \frac{mu^{2}rx^{2}}{o} + 0\\=&\frac{mu^{2}rR^{2}}{o} + \frac{2mu^{2}rXx}{o} + \frac{mu^{2}rX^{2}}{o} + \frac{mu^{2}rx^{2}}{o} + \frac{mu^{2}r^{3}}{o}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !