Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of s is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(m{u}^{2}r)}{(o(s({R}^{2} + {r}^{2} + {X}^{2} + 2Xx + {x}^{2}) + 2Rr))}\ with\ respect\ to\ s:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{mu^{2}r}{(oR^{2}s + r^{2}os + oX^{2}s + 2oXxs + ox^{2}s + 2roR)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{mu^{2}r}{(oR^{2}s + r^{2}os + oX^{2}s + 2oXxs + ox^{2}s + 2roR)}\right)}{ds}\\=&(\frac{-(oR^{2} + r^{2}o + oX^{2} + 2oXx + ox^{2} + 0)}{(oR^{2}s + r^{2}os + oX^{2}s + 2oXxs + ox^{2}s + 2roR)^{2}})mu^{2}r + 0\\=&\frac{-mu^{2}roR^{2}}{(oR^{2}s + r^{2}os + oX^{2}s + 2oXxs + ox^{2}s + 2roR)^{2}} - \frac{2mu^{2}roXx}{(oR^{2}s + r^{2}os + oX^{2}s + 2oXxs + ox^{2}s + 2roR)^{2}} - \frac{mu^{2}roX^{2}}{(oR^{2}s + r^{2}os + oX^{2}s + 2oXxs + ox^{2}s + 2roR)^{2}} - \frac{mu^{2}rox^{2}}{(oR^{2}s + r^{2}os + oX^{2}s + 2oXxs + ox^{2}s + 2roR)^{2}} - \frac{mu^{2}r^{3}o}{(oR^{2}s + r^{2}os + oX^{2}s + 2oXxs + ox^{2}s + 2roR)^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return