Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of s is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (\frac{o(s({R}^{2} + {r}^{2} + {X}^{2} + 2Xx + {x}^{2}) + 2Rr)}{(m{u}^{2}r)})\ with\ respect\ to\ s:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{oR^{2}s}{rmu^{2}} + \frac{ors}{mu^{2}} + \frac{2oXxs}{rmu^{2}} + \frac{oX^{2}s}{rmu^{2}} + \frac{ox^{2}s}{rmu^{2}} + \frac{2oR}{mu^{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{oR^{2}s}{rmu^{2}} + \frac{ors}{mu^{2}} + \frac{2oXxs}{rmu^{2}} + \frac{oX^{2}s}{rmu^{2}} + \frac{ox^{2}s}{rmu^{2}} + \frac{2oR}{mu^{2}}\right)}{ds}\\=&\frac{oR^{2}}{rmu^{2}} + \frac{or}{mu^{2}} + \frac{2oXx}{rmu^{2}} + \frac{oX^{2}}{rmu^{2}} + \frac{ox^{2}}{rmu^{2}} + 0\\=&\frac{oR^{2}}{rmu^{2}} + \frac{or}{mu^{2}} + \frac{2oXx}{rmu^{2}} + \frac{oX^{2}}{rmu^{2}} + \frac{ox^{2}}{rmu^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return