There are 1 questions in this calculation: for each question, the 1 derivative of s is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(m{u}^{2}r)}{(as({(R + \frac{r}{s})}^{2} + {(X + x)}^{2}))}\ with\ respect\ to\ s:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{mu^{2}r}{(aR^{2}s + 2raR + \frac{r^{2}a}{s} + aX^{2}s + 2aXxs + ax^{2}s)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{mu^{2}r}{(aR^{2}s + 2raR + \frac{r^{2}a}{s} + aX^{2}s + 2aXxs + ax^{2}s)}\right)}{ds}\\=&(\frac{-(aR^{2} + 0 + \frac{r^{2}a*-1}{s^{2}} + aX^{2} + 2aXx + ax^{2})}{(aR^{2}s + 2raR + \frac{r^{2}a}{s} + aX^{2}s + 2aXxs + ax^{2}s)^{2}})mu^{2}r + 0\\=&\frac{-mu^{2}raR^{2}}{(aR^{2}s + 2raR + \frac{r^{2}a}{s} + aX^{2}s + 2aXxs + ax^{2}s)^{2}} + \frac{mu^{2}r^{3}a}{(aR^{2}s + 2raR + \frac{r^{2}a}{s} + aX^{2}s + 2aXxs + ax^{2}s)^{2}s^{2}} - \frac{2mu^{2}raXx}{(aR^{2}s + 2raR + \frac{r^{2}a}{s} + aX^{2}s + 2aXxs + ax^{2}s)^{2}} - \frac{mu^{2}raX^{2}}{(aR^{2}s + 2raR + \frac{r^{2}a}{s} + aX^{2}s + 2aXxs + ax^{2}s)^{2}} - \frac{mu^{2}rax^{2}}{(aR^{2}s + 2raR + \frac{r^{2}a}{s} + aX^{2}s + 2aXxs + ax^{2}s)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !