There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ {x}^{2}sin(2)x\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{3}sin(2)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{3}sin(2)\right)}{dx}\\=&3x^{2}sin(2) + x^{3}cos(2)*0\\=&3x^{2}sin(2)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 3x^{2}sin(2)\right)}{dx}\\=&3*2xsin(2) + 3x^{2}cos(2)*0\\=&6xsin(2)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( 6xsin(2)\right)}{dx}\\=&6sin(2) + 6xcos(2)*0\\=&6sin(2)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( 6sin(2)\right)}{dx}\\=&6cos(2)*0\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !