There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {2}^{(1 - x)} + {2}^{(1 - \frac{1}{(2x)})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {2}^{(-x + 1)} + {2}^{(\frac{\frac{-1}{2}}{x} + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {2}^{(-x + 1)} + {2}^{(\frac{\frac{-1}{2}}{x} + 1)}\right)}{dx}\\=&({2}^{(-x + 1)}((-1 + 0)ln(2) + \frac{(-x + 1)(0)}{(2)})) + ({2}^{(\frac{\frac{-1}{2}}{x} + 1)}((\frac{\frac{-1}{2}*-1}{x^{2}} + 0)ln(2) + \frac{(\frac{\frac{-1}{2}}{x} + 1)(0)}{(2)}))\\=&-{2}^{(-x + 1)}ln(2) + \frac{{2}^{(\frac{\frac{-1}{2}}{x} + 1)}ln(2)}{2x^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !