There are 1 questions in this calculation: for each question, the 1 derivative of s is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(s + 5)}{(s(s + 3))}\ with\ respect\ to\ s:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{s}{(s^{2} + 3s)} + \frac{5}{(s^{2} + 3s)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{s}{(s^{2} + 3s)} + \frac{5}{(s^{2} + 3s)}\right)}{ds}\\=&(\frac{-(2s + 3)}{(s^{2} + 3s)^{2}})s + \frac{1}{(s^{2} + 3s)} + 5(\frac{-(2s + 3)}{(s^{2} + 3s)^{2}})\\=&\frac{-2s^{2}}{(s^{2} + 3s)^{2}} - \frac{13s}{(s^{2} + 3s)^{2}} + \frac{1}{(s^{2} + 3s)} - \frac{15}{(s^{2} + 3s)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !