There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ Ax + B + sqrt(C{x}^{2} + Dx + e)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = Ax + B + sqrt(Cx^{2} + Dx + e)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( Ax + B + sqrt(Cx^{2} + Dx + e)\right)}{dx}\\=&A + 0 + \frac{(C*2x + D + 0)*\frac{1}{2}}{(Cx^{2} + Dx + e)^{\frac{1}{2}}}\\=&A + \frac{Cx}{(Cx^{2} + Dx + e)^{\frac{1}{2}}} + \frac{D}{2(Cx^{2} + Dx + e)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !