There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ x{(sin(4)x)}^{\frac{1}{2}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{\frac{3}{2}}sin^{\frac{1}{2}}(4)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{\frac{3}{2}}sin^{\frac{1}{2}}(4)\right)}{dx}\\=&\frac{3}{2}x^{\frac{1}{2}}sin^{\frac{1}{2}}(4) + \frac{x^{\frac{3}{2}}*\frac{1}{2}cos(4)*0}{sin^{\frac{1}{2}}(4)}\\=&\frac{3x^{\frac{1}{2}}sin^{\frac{1}{2}}(4)}{2}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !