There are 1 questions in this calculation: for each question, the 3 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ third\ derivative\ of\ function\ 7arcsin({x}^{3})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 7arcsin(x^{3})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 7arcsin(x^{3})\right)}{dx}\\=&7(\frac{(3x^{2})}{((1 - (x^{3})^{2})^{\frac{1}{2}})})\\=&\frac{21x^{2}}{(-x^{6} + 1)^{\frac{1}{2}}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{21x^{2}}{(-x^{6} + 1)^{\frac{1}{2}}}\right)}{dx}\\=&21(\frac{\frac{-1}{2}(-6x^{5} + 0)}{(-x^{6} + 1)^{\frac{3}{2}}})x^{2} + \frac{21*2x}{(-x^{6} + 1)^{\frac{1}{2}}}\\=&\frac{63x^{7}}{(-x^{6} + 1)^{\frac{3}{2}}} + \frac{42x}{(-x^{6} + 1)^{\frac{1}{2}}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{63x^{7}}{(-x^{6} + 1)^{\frac{3}{2}}} + \frac{42x}{(-x^{6} + 1)^{\frac{1}{2}}}\right)}{dx}\\=&63(\frac{\frac{-3}{2}(-6x^{5} + 0)}{(-x^{6} + 1)^{\frac{5}{2}}})x^{7} + \frac{63*7x^{6}}{(-x^{6} + 1)^{\frac{3}{2}}} + 42(\frac{\frac{-1}{2}(-6x^{5} + 0)}{(-x^{6} + 1)^{\frac{3}{2}}})x + \frac{42}{(-x^{6} + 1)^{\frac{1}{2}}}\\=&\frac{567x^{12}}{(-x^{6} + 1)^{\frac{5}{2}}} + \frac{567x^{6}}{(-x^{6} + 1)^{\frac{3}{2}}} + \frac{42}{(-x^{6} + 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !