Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ 2{x}^{2}{\frac{1}{(1 - x)}}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{2x^{2}}{(-x + 1)^{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{2x^{2}}{(-x + 1)^{2}}\right)}{dx}\\=&2(\frac{-2(-1 + 0)}{(-x + 1)^{3}})x^{2} + \frac{2*2x}{(-x + 1)^{2}}\\=&\frac{4x^{2}}{(-x + 1)^{3}} + \frac{4x}{(-x + 1)^{2}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{4x^{2}}{(-x + 1)^{3}} + \frac{4x}{(-x + 1)^{2}}\right)}{dx}\\=&4(\frac{-3(-1 + 0)}{(-x + 1)^{4}})x^{2} + \frac{4*2x}{(-x + 1)^{3}} + 4(\frac{-2(-1 + 0)}{(-x + 1)^{3}})x + \frac{4}{(-x + 1)^{2}}\\=&\frac{12x^{2}}{(-x + 1)^{4}} + \frac{16x}{(-x + 1)^{3}} + \frac{4}{(-x + 1)^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return