There are 1 questions in this calculation: for each question, the 1 derivative of L is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {K}^{a}{L}^{b}\ with\ respect\ to\ L:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {K}^{a}{L}^{b}\right)}{dL}\\=&({K}^{a}((0)ln(K) + \frac{(a)(0)}{(K)})){L}^{b} + {K}^{a}({L}^{b}((0)ln(L) + \frac{(b)(1)}{(L)}))\\=&\frac{b{L}^{b}{K}^{a}}{L}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !