There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ {e}^{x} - {(cos(x))}^{-2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = {e}^{x} - \frac{1}{cos^{2}(x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( {e}^{x} - \frac{1}{cos^{2}(x)}\right)}{dx}\\=&({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) - \frac{2sin(x)}{cos^{3}(x)}\\=&{e}^{x} - \frac{2sin(x)}{cos^{3}(x)}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( {e}^{x} - \frac{2sin(x)}{cos^{3}(x)}\right)}{dx}\\=&({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) - \frac{2cos(x)}{cos^{3}(x)} - \frac{2sin(x)*3sin(x)}{cos^{4}(x)}\\=&{e}^{x} - \frac{2}{cos^{2}(x)} - \frac{6sin^{2}(x)}{cos^{4}(x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !