Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(2 - x)}^{2} + in({e}^{x} + sqrt(1 + {e}^{2}))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{2} - 4x + in{e}^{x} + insqrt(e^{2} + 1) + 4\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{2} - 4x + in{e}^{x} + insqrt(e^{2} + 1) + 4\right)}{dx}\\=&2x - 4 + in({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + \frac{in(2e*0 + 0)*\frac{1}{2}}{(e^{2} + 1)^{\frac{1}{2}}} + 0\\=&2x + in{e}^{x} - 4\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return