There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (6{x}^{2} + {x}^{3}){\frac{1}{(2 + x)}}^{3}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{6x^{2}}{(x + 2)^{3}} + \frac{x^{3}}{(x + 2)^{3}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{6x^{2}}{(x + 2)^{3}} + \frac{x^{3}}{(x + 2)^{3}}\right)}{dx}\\=&6(\frac{-3(1 + 0)}{(x + 2)^{4}})x^{2} + \frac{6*2x}{(x + 2)^{3}} + (\frac{-3(1 + 0)}{(x + 2)^{4}})x^{3} + \frac{3x^{2}}{(x + 2)^{3}}\\=&\frac{-18x^{2}}{(x + 2)^{4}} + \frac{12x}{(x + 2)^{3}} - \frac{3x^{3}}{(x + 2)^{4}} + \frac{3x^{2}}{(x + 2)^{3}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !