Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {x}^{2}log_{2}^{3x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{2}log_{2}^{3x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{2}log_{2}^{3x}\right)}{dx}\\=&2xlog_{2}^{3x} + x^{2}(\frac{(\frac{(3)}{(3x)} - \frac{(0)log_{2}^{3x}}{(2)})}{(ln(2))})\\=&2xlog_{2}^{3x} + \frac{x}{ln(2)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return