Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{1}{sqrt({(x - a)}^{2} + {(y - b)}^{2})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{sqrt(x^{2} - 2ax + a^{2} - 2yb + y^{2} + b^{2})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{sqrt(x^{2} - 2ax + a^{2} - 2yb + y^{2} + b^{2})}\right)}{dx}\\=&\frac{-(2x - 2a + 0 + 0 + 0 + 0)*\frac{1}{2}}{(x^{2} - 2ax + a^{2} - 2yb + y^{2} + b^{2})(x^{2} - 2ax + a^{2} - 2yb + y^{2} + b^{2})^{\frac{1}{2}}}\\=&\frac{-x}{(x^{2} - 2ax + a^{2} - 2yb + y^{2} + b^{2})^{\frac{3}{2}}} + \frac{a}{(x^{2} - 2ax + a^{2} - 2yb + y^{2} + b^{2})^{\frac{3}{2}}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return